
[Advertisement]

[Get Cyberciti Domain for Just Rs.445 with 2 Free e-mail]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

How to write shell script
Following steps are required to write shell script:

(1) Use any editor like vi or mcedit to write shell script.

(2) After writing shell script set execute permission for your script as follows
syntax:
chmod permission your-script-name

Examples:

Note: This will set read write execute(7) permission for owner, for group and other permission is read and execute only(5).

(3) Execute your script as
syntax:
bash your-script-name
sh your-script-name
./your-script-name

Examples:

NOTE In the last syntax ./ means current directory, But only . (dot) means execute given command file in current shell
without starting the new copy of shell, The syntax for . (dot) command is as follows
Syntax:
. command-name

Example:

Now you are ready to write first shell script that will print "Knowledge is Power" on screen. See the common vi command
list , if you are new to vi.

After saving the above script, you can run the script as follows:

LSST v1.05r3 > Chapter 2 > How to write shell script

http://www.cyberciti.biz/pdf/lsst/ch02sec01.html (1 of 2) [7/29/2002 6:51:39 PM]

This will not run script since we have not set execute permission for our script first; to do this type command

First screen will be clear, then Knowledge is Power is printed on screen.

Script Command(s) Meaning
$ vi first Start vi editor

#
My first shell script
#

followed by any text is considered as
comment. Comment gives more
information about script, logical
explanation about shell script.
Syntax:
comment-text

clear clear the screen

echo "Knowledge is Power"

To print message or value of variables on
screen, we use echo command, general
form of echo command is as follows
syntax:
echo "Message"

How Shell Locates the file (My own bin directory to execute script)

Tip: For shell script file try to give file extension such as .sh, which can be easily identified by you as shell script.

Exercise:
1)Write following shell script, save it, execute it and note down it's output.

Future Point: At the end why statement exit 0 is used? See exit status for more information.

Prev Home Next
Getting started with Shell Programming Up Variables in Shell

[Advertisement]

[Get Cyberciti Domain for Just Rs.445 with 2 Free e-mail]

LSST v1.05r3 > Chapter 2 > How to write shell script

http://www.cyberciti.biz/pdf/lsst/ch02sec01.html (2 of 2) [7/29/2002 6:51:39 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Variables in Shell
To process our data/information, data must be kept in computers RAM memory. RAM memory is
divided into small locations, and each location had unique number called memory location/address,
which is used to hold our data. Programmer can give a unique name to this memory location/address
called memory variable or variable (Its a named storage location that may take different values, but only
one at a time).

In Linux (Shell), there are two types of variable:
(1) System variables - Created and maintained by Linux itself. This type of variable defined in
CAPITAL LETTERS.
(2) User defined variables (UDV) - Created and maintained by user. This type of variable defined in
lower letters.

You can see system variables by giving command like $ set, some of the important System variables are:

System Variable Meaning
BASH=/bin/bash Our shell name

BASH_VERSION=1.14.7(1) Our shell version name
COLUMNS=80 No. of columns for our screen
HOME=/home/vivek Our home directory
LINES=25 No. of columns for our screen
LOGNAME=students students Our logging name
OSTYPE=Linux Our Os type
PATH=/usr/bin:/sbin:/bin:/usr/sbin Our path settings
PS1=[\u@\h \W]\$ Our prompt settings
PWD=/home/students/Common Our current working directory
SHELL=/bin/bash Our shell name
USERNAME=vivek User name who is currently login to this PC

NOTE that Some of the above settings can be different in your PC/Linux environment. You can print any
of the above variables contains as follows:

Exercise:
1) If you want to print your home directory location then you give command:
a)

OR

LSST v1.05r3 > Chapter 2 > Variables in Shell

http://www.cyberciti.biz/pdf/lsst/ch02sec02.html (1 of 2) [7/29/2002 6:51:42 PM]

(b)

Which of the above command is correct & why? Click here for answer.

Caution: Do not modify System variable this can some time create problems.

Prev Home Next

How to write shell script Up How to define User defined variables
(UDV)

LSST v1.05r3 > Chapter 2 > Variables in Shell

http://www.cyberciti.biz/pdf/lsst/ch02sec02.html (2 of 2) [7/29/2002 6:51:42 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

How to define User defined variables
(UDV)
To define UDV use following syntax
Syntax:
variable name=value

'value' is assigned to given 'variable name' and Value must be on right side = sign.

Example:
this is ok
Error, NOT Ok, Value must be on right side of = sign.

To define variable called 'vech' having value Bus

To define variable called n having value 10

Prev Home Next

Variables in shell Up Rules for Naming variable name (Both
UDV and System Variable)

LSST v1.05r3 > Chapter 2 > How to define User defined variables (UDV)

http://www.cyberciti.biz/pdf/lsst/ch02sec03.html [7/29/2002 6:51:44 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Rules for Naming variable name (Both
UDV and System Variable)
(1) Variable name must begin with Alphanumeric character or underscore character (_), followed by one
or more Alphanumeric character. For e.g. Valid shell variable are as follows
HOME
SYSTEM_VERSION
vech
no

(2) Don't put spaces on either side of the equal sign when assigning value to variable. For e.g. In
following variable declaration there will be no error

But there will be problem for any of the following variable declaration:

(3) Variables are case-sensitive, just like filename in Linux. For e.g.

Above all are different variable name, so to print value 20 we have to use $ echo $NO and not any of the
following

will print 10 but not 20
will print 11 but not 20
will print 2 but not 20

(4) You can define NULL variable as follows (NULL variable is variable which has no value at the time
of definition) For e.g.
$ vech=
$ vech=""
Try to print it's value by issuing following command

Nothing will be shown because variable has no value i.e. NULL variable.

(5) Do not use ?,* etc, to name your variable names.

Prev Home Next

LSST v1.05r3 > Chapter 2 > Rules for Naming variable name (Both UDV and System Variable)

http://www.cyberciti.biz/pdf/lsst/ch02sec04.html (1 of 2) [7/29/2002 6:51:46 PM]

How to define User defined variables
(UDV)

Up How to print or access value of UDV
(User defined variables)

LSST v1.05r3 > Chapter 2 > Rules for Naming variable name (Both UDV and System Variable)

http://www.cyberciti.biz/pdf/lsst/ch02sec04.html (2 of 2) [7/29/2002 6:51:46 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

How to print or access value of UDV
(User defined variables)
To print or access UDV use following syntax
Syntax:
$variablename

Define variable vech and n as follows:

To print contains of variable 'vech' type

It will print 'Bus',To print contains of variable 'n' type command as follows

Caution: Do not try $ echo vech, as it will print vech instead its value 'Bus' and $ echo n, as it will print
n instead its value '10', You must use $ followed by variable name.

Exercise
Q.1.How to Define variable x with value 10 and print it on screen.
Q.2.How to Define variable xn with value Rani and print it on screen
Q.3.How to print sum of two numbers, let's say 6 and 3?
Q.4.How to define two variable x=20, y=5 and then to print division of x and y (i.e. x/y)
Q.5.Modify above and store division of x and y to variable called z
Q.6.Point out error if any in following script

For Answers Click here

Prev Home Next

LSST v1.05r3 > Chapter 2 > How to print or access value of UDV (User defined variables)

http://www.cyberciti.biz/pdf/lsst/ch02sec05.html (1 of 2) [7/29/2002 6:51:48 PM]

Rules for Naming variable name (Both
UDV and System Variable)

Up echo Command

LSST v1.05r3 > Chapter 2 > How to print or access value of UDV (User defined variables)

http://www.cyberciti.biz/pdf/lsst/ch02sec05.html (2 of 2) [7/29/2002 6:51:48 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

echo Command
Use echo command to display text or value of variable.

echo [options] [string, variables...]
Displays text or variables value on screen.
Options
-n Do not output the trailing new line.
-e Enable interpretation of the following backslash escaped characters in the strings:
\a alert (bell)
\b backspace
\c suppress trailing new line
\n new line
\r carriage return
\t horizontal tab
\\ backslash

For e.g. $ echo -e "An apple a day keeps away \a\t\tdoctor\n"

 How to display colorful text on screen with bold or blink effects, how to print text on any row, column
on screen, click here for more!

Prev Home Next
How to print or access value of UDV (User
defined variables)

Up Shell Arithmetic

LSST v1.05r3 > Chapter 2 > echo Command

http://www.cyberciti.biz/pdf/lsst/ch02sec06.html [7/29/2002 6:51:50 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Shell Arithmetic
Use to perform arithmetic operations.

Syntax:
expr op1 math-operator op2

Examples:

Note:
expr 20 %3 - Remainder read as 20 mod 3 and remainder is 2.
expr 10 * 3 - Multiplication use * and not * since its wild card.

For the last statement not the following points

(1) First, before expr keyword we used ` (back quote) sign not the (single quote i.e. ') sign. Back quote is
generally found on the key under tilde (~) on PC keyboard OR to the above of TAB key.

(2) Second, expr is also end with ` i.e. back quote.

(3) Here expr 6 + 3 is evaluated to 9, then echo command prints 9 as sum

(4) Here if you use double quote or single quote, it will NOT work
For e.g.
$ echo "expr 6 + 3" # It will print expr 6 + 3
$ echo 'expr 6 + 3' # It will print expr 6 + 3

 See Parameter substitution - To save your time.

Prev Home Next
echo Command Up More about Quotes

LSST v1.05r3 > Chapter 2 > Shell Arithmetic

http://www.cyberciti.biz/pdf/lsst/ch02sec07.html [7/29/2002 6:51:52 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

More about Quotes
There are three types of quotes

Quotes Name Meaning

" Double Quotes
"Double Quotes" - Anything enclose in double quotes removed meaning of that
characters (except \ and $).

' Single quotes 'Single quotes' - Enclosed in single quotes remains unchanged.

` Back quote
`Back quote` - To execute command

Example:
$ echo "Today is date"
Can't print message with today's date.
$ echo "Today is `date`".
It will print today's date as, Today is Tue Jan,Can you see that the `date` statement uses back quote?

Prev Home Next
Shell Arithmetic Up Exit Status

LSST v1.05r3 > Chapter 2 > More about Quotes

http://www.cyberciti.biz/pdf/lsst/ch02sec08.html [7/29/2002 6:51:53 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Exit Status
By default in Linux if particular command/shell script is executed, it return two type of values which is
used to see whether command or shell script executed is successful or not.

(1) If return value is zero (0), command is successful.
(2) If return value is nonzero, command is not successful or some sort of error executing command/shell
script.

This value is know as Exit Status.

But how to find out exit status of command or shell script?
Simple, to determine this exit Status you can use $? special variable of shell.

For e.g. (This example assumes that unknow1file doest not exist on your hard drive)
$ rm unknow1file
It will show error as follows
rm: cannot remove `unkowm1file': No such file or directory
and after that if you give command
$ echo $?
it will print nonzero value to indicate error. Now give command
$ ls
$ echo $?
It will print 0 to indicate command is successful.

Exercise
Try the following commands and not down the exit status:

 $? useful variable, want to know more such Linux variables click here to explore them!

LSST v1.05r3 > Chapter 2 > Exit Status

http://www.cyberciti.biz/pdf/lsst/ch02sec09.html (1 of 2) [7/29/2002 6:51:55 PM]

Prev Home Next
More about Quotes Up The read Statement

LSST v1.05r3 > Chapter 2 > Exit Status

http://www.cyberciti.biz/pdf/lsst/ch02sec09.html (2 of 2) [7/29/2002 6:51:55 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

The read Statement
Use to get input (data from user) from keyboard and store (data) to variable.
Syntax:
read variable1, variable2,...variableN

Following script first ask user, name and then waits to enter name from the user via keyboard. Then user
enters name from keyboard (after giving name you have to press ENTER key) and entered name through
keyboard is stored (assigned) to variable fname.

Run it as follows:

Your first name please: vivek
Hello vivek, Lets be friend!

Prev Home Next

Exit Status Up Wild cards (Filename Shorthand or meta
Characters)

LSST v1.05r3 > Chapter 2 > The read Statement

http://www.cyberciti.biz/pdf/lsst/ch02sec10.html [7/29/2002 6:51:56 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Wild cards (Filename Shorthand or meta
Characters)

Wild card
/Shorthand

Meaning Examples

*
Matches any string or group of
characters.

$ ls * will show all files

$ ls a*
will show all files whose first
name is starting with letter 'a'

$ ls *.c
will show all files having
extension .c

$ ls ut*.c
will show all files having
extension .c but file name must
begin with 'ut'.

? Matches any single character.

$ ls ?
will show all files whose names
are 1 character long

$ ls fo?
will show all files whose names
are 3 character long and file name
begin with fo

[...]
Matches any one of the
enclosed characters

$ ls [abc]*
will show all files beginning with
letters a,b,c

Note:
[..-..] A pair of characters separated by a minus sign denotes a range.

Example:
$ ls /bin/[a-c]*

Will show all files name beginning with letter a,b or c like

 /bin/arch /bin/awk /bin/bsh /bin/chmod /bin/cp
 /bin/ash /bin/basename /bin/cat /bin/chown /bin/cpio
 /bin/ash.static /bin/bash /bin/chgrp /bin/consolechars /bin/csh

But
$ ls /bin/[!a-o]
$ ls /bin/[^a-o]

If the first character following the [is a ! or a ^ ,then any character not enclosed is matched i.e. do not
show us file name that beginning with a,b,c,e...o, like

LSST v1.05r3 > Chapter 2 > Wild cards (Filename Shorthand or meta Characters)

http://www.cyberciti.biz/pdf/lsst/ch02sec11.html (1 of 2) [7/29/2002 6:51:58 PM]

 /bin/ps /bin/rvi /bin/sleep /bin/touch /bin/view
 /bin/pwd /bin/rview /bin/sort /bin/true /bin/wcomp
 /bin/red /bin/sayHello /bin/stty /bin/umount /bin/xconf
 /bin/remadmin /bin/sed /bin/su /bin/uname /bin/ypdomainname
 /bin/rm /bin/setserial /bin/sync /bin/userconf /bin/zcat
 /bin/rmdir /bin/sfxload /bin/tar /bin/usleep
 /bin/rpm /bin/sh /bin/tcsh /bin/vi

Prev Home Next
The read Statement Up More command on one command line

LSST v1.05r3 > Chapter 2 > Wild cards (Filename Shorthand or meta Characters)

http://www.cyberciti.biz/pdf/lsst/ch02sec11.html (2 of 2) [7/29/2002 6:51:58 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

More command on one command line
Syntax:
command1;command2
To run two command with one command line.

Examples:
$ date;who
Will print today's date followed by users who are currently login. Note that You can't use
$ date who
for same purpose, you must put semicolon in between date and who command.

Prev Home Next
Wild cards (Filename Shorthand or meta
Characters)

Up Command Line Processing

LSST v1.05r3 > Chapter 2 > More command on one command line

http://www.cyberciti.biz/pdf/lsst/ch02sec12.html [7/29/2002 6:52:00 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Command Line Processing
Try the following command (assumes that the file "grate_stories_of" is not exist on your system)
$ ls grate_stories_of
It will print message something like - grate_stories_of: No such file or directory.

ls is the name of an actual command and shell executed this command when you type command at shell
prompt. Now it creates one more question What are commands? What happened when you type $ ls
grate_stories_of ?

The first word on command line is, ls - is name of the command to be executed.
Everything else on command line is taken as arguments to this command. For e.g.
$ tail +10 myf
Name of command is tail, and the arguments are +10 and myf.

Exercise
Try to determine command and arguments from following commands

Answer:

Command
No. of argument to this command

(i.e $#)
Actual Argument

ls 1 foo
cp 2 y and y.bak
mv 2 y.bak and y.okay
tail 2 -10 and myf
mail 1 raj
sort 3 -r, -n, and myf
date 0
clear 0

NOTE:
$# holds number of arguments specified on command line. And $* or $@ refer to all arguments passed to

LSST v1.05r3 > Chapter 2 > Command Line Processing

http://www.cyberciti.biz/pdf/lsst/ch02sec13.html (1 of 2) [7/29/2002 6:52:02 PM]

script.

Prev Home Next
More commands on one command line Up Why Command Line arguments required

LSST v1.05r3 > Chapter 2 > Command Line Processing

http://www.cyberciti.biz/pdf/lsst/ch02sec13.html (2 of 2) [7/29/2002 6:52:02 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Why Command Line arguments required
Telling the command/utility which option to use.1.

Informing the utility/command which file or group of files to process (reading/writing of files).2.

Let's take rm command, which is used to remove file, but which file you want to remove and how you
will tell this to rm command (even rm command don't ask you name of file that you would like to
remove). So what we do is we write command as follows:
$ rm {file-name}
Here rm is command and filename is file which you would like to remove. This way you tail rm
command which file you would like to remove. So we are doing one way communication with our
command by specifying filename. Also you can pass command line arguments to your script to make it
more users friendly. But how we access command line argument in our script.

Lets take ls command
$ Ls -a /*
This command has 2 command line argument -a and /* is another. For shell script,
$ myshell foo bar

 Shell Script name i.e. myshell

 First command line argument passed to myshell i.e. foo

 Second command line argument passed to myshell i.e. bar

In shell if we wish to refer this command line argument we refer above as follows

 myshell it is $0

 foo it is $1

 bar it is $2

LSST v1.05r3 > Chapter 2 > Why Command Line arguments required

http://www.cyberciti.biz/pdf/lsst/ch02sec14.html (1 of 3) [7/29/2002 6:52:05 PM]

Here $# (built in shell variable) will be 2 (Since foo and bar only two Arguments), Please note at a time
such 9 arguments can be used from $1..$9, You can also refer all of them by using $* (which expand to
`$1,$2...$9`). Note that $1..$9 i.e command line arguments to shell script is know as "positional
parameters".

Exercise
Try to write following for commands
Shell Script Name ($0),
No. of Arguments (i.e. $#),
And actual argument (i.e. $1,$2 etc)

Answer

Shell Script Name No. Of Arguments to script Actual Argument ($1,..$9)
$0 $# $1 $2 $3 $4 $5

sum 2 11 20
math 3 4 - 7
d 0
bp 3 -5 myf +20
Ls 1 *
cal 0
findBS 4 4 8 24 BIG

Following script is used to print command ling argument and will show you how to access them:

Run it as follows

LSST v1.05r3 > Chapter 2 > Why Command Line arguments required

http://www.cyberciti.biz/pdf/lsst/ch02sec14.html (2 of 3) [7/29/2002 6:52:05 PM]

Set execute permission as follows:
$ chmod 755 demo

Run it & test it as follows:
$./demo Hello World

If test successful, copy script to your own bin directory (Install script for private use)
$ cp demo ~/bin

Check whether it is working or not (?)
$ demo
$ demo Hello World

NOTE: After this, for any script you have to used above command, in sequence, I am not going to show
you all of the above command(s) for rest of Tutorial.

Also note that you can't assigne the new value to command line arguments i.e positional parameters.
So following all statements in shell script are invalid:
$1 = 5
$2 = "My Name"

Prev Home Next

Command Line Processing Up Redirection of Standard output/input
i.e.Input - Output redirection

LSST v1.05r3 > Chapter 2 > Why Command Line arguments required

http://www.cyberciti.biz/pdf/lsst/ch02sec14.html (3 of 3) [7/29/2002 6:52:05 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Redirection of Standard output/input i.e.
Input - Output redirection
Mostly all commands give output on screen or take input from keyboard, but in Linux (and in other OSs
also) it's possible to send output to file or to read input from file.

For e.g.
$ ls command gives output to screen; to send output to file of ls command give command

$ ls > filename
It means put output of ls command to filename.

There are three main redirection symbols >,>>,<

(1) > Redirector Symbol
Syntax:
Linux-command > filename
To output Linux-commands result (output of command or shell script) to file. Note that if file already
exist, it will be overwritten else new file is created. For e.g. To send output of ls command give
$ ls > myfiles
Now if 'myfiles' file exist in your current directory it will be overwritten without any type of warning.

(2) >> Redirector Symbol
Syntax:
Linux-command >> filename
To output Linux-commands result (output of command or shell script) to END of file. Note that if file
exist , it will be opened and new information/data will be written to END of file, without losing previous
information/data, And if file is not exist, then new file is created. For e.g. To send output of date
command to already exist file give command
$ date >> myfiles

(3) < Redirector Symbol
Syntax:
Linux-command < filename
To take input to Linux-command from file instead of key-board. For e.g. To take input for cat command
give
$ cat < myfiles

Click here to learn more about I/O Redirection

You can also use above redirectors simultaneously as follows
Create text file sname as follows

LSST v1.05r3 > Chapter 2 > Redirection of Standard output/input i.e. Input - Output redirection

http://www.cyberciti.biz/pdf/lsst/ch02sec15.html (1 of 2) [7/29/2002 6:52:06 PM]

$cat > sname
vivek
ashish
zebra
babu
Press CTRL + D to save.

Now issue following command.
$ sort < sname > sorted_names
$ cat sorted_names
ashish
babu
vivek
zebra

In above example sort ($ sort < sname > sorted_names) command takes input from sname file and
output of sort command (i.e. sorted names) is redirected to sorted_names file.

Try one more example to clear your idea:
$ tr "[a-z]" "[A-Z]" < sname > cap_names
$ cat cap_names
VIVEK
ASHISH
ZEBRA
BABU

tr command is used to translate all lower case characters to upper-case letters. It take input from sname
file, and tr's output is redirected to cap_names file.

Future Point : Try following command and find out most important point:
$ sort > new_sorted_names < sname
$ cat new_sorted_names

Prev Home Next
Why Command Line arguments required Up Pipe

LSST v1.05r3 > Chapter 2 > Redirection of Standard output/input i.e. Input - Output redirection

http://www.cyberciti.biz/pdf/lsst/ch02sec15.html (2 of 2) [7/29/2002 6:52:06 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Pipes
A pipe is a way to connect the output of one program to the input of another program without any
temporary file.

Pipe Defined as:
"A pipe is nothing but a temporary storage place where the output of one command is stored and then
passed as the input for second command. Pipes are used to run more than two commands (Multiple
commands) from same command line."

Syntax:
command1 | command2

Examles:

Command using Pipes Meaning or Use of Pipes

$ ls | more
Output of ls command is given as input to more
command So that output is printed one screen full
page at a time.

$ who | sort
Output of who command is given as input to sort
command So that it will print sorted list of users

$ who | sort > user_list
Same as above except output of sort is send to
(redirected) user_list file

$ who | wc -l
Output of who command is given as input to wc
command So that it will print number of user who
logon to system

$ ls -l | wc -l
Output of ls command is given as input to wc
command So that it will print number of files in
current directory.

LSST v1.05r3 > Chapter 2 > Pipes

http://www.cyberciti.biz/pdf/lsst/ch02sec16.html (1 of 2) [7/29/2002 6:52:08 PM]

$ who | grep raju

Output of who command is given as input to grep
command So that it will print if particular user
name if he is logon or nothing is printed (To see
particular user is logon or not)

Prev Home Next
Redirection of Standard output/input
i.e.Input - Output redirection

Up Filter

LSST v1.05r3 > Chapter 2 > Pipes

http://www.cyberciti.biz/pdf/lsst/ch02sec16.html (2 of 2) [7/29/2002 6:52:08 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Filter
If a Linux command accepts its input from the standard input and produces its output on standard output
is know as a filter. A filter performs some kind of process on the input and gives output. For e.g..
Suppose you have file called 'hotel.txt' with 100 lines data, And from 'hotel.txt' you would like to print
contains from line number 20 to line number 30 and store this result to file called 'hlist' then give
command:
$ tail +20 < hotel.txt | head -n30 >hlist

Here head command is filter which takes its input from tail command (tail command start selecting from
line number 20 of given file i.e. hotel.txt) and passes this lines as input to head, whose output is
redirected to 'hlist' file.

Consider one more following example
$ sort < sname | uniq > u_sname

Here uniq is filter which takes its input from sort command and passes this lines as input to uniq; Then
uniqs output is redirected to "u_sname" file.

Prev Home Next
Pipes Up What is Processes

LSST v1.05r3 > Chapter 2 > Filter

http://www.cyberciti.biz/pdf/lsst/ch02sec17.html [7/29/2002 6:52:09 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

What is Processes
Process is kind of program or task carried out by your PC. For e.g.
$ ls -lR
ls command or a request to list files in a directory and all subdirectory in your current directory - It is a
process.

Process defined as:
"A process is program (command given by user) to perform specific Job. In Linux when you start
process, it gives a number to process (called PID or process-id), PID starts from 0 to 65535."

Prev Home Next
Filter Up Why Process required

LSST v1.05r3 > Chapter 2 > What is Processes

http://www.cyberciti.biz/pdf/lsst/ch02sec18.html [7/29/2002 6:52:11 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Why Process required
As You know Linux is multi-user, multitasking Os. It means you can run more than two process
simultaneously if you wish. For e.g. To find how many files do you have on your system you may give
command like:

$ ls / -R | wc -l
This command will take lot of time to search all files on your system. So you can run such command in
Background or simultaneously by giving command like

$ ls / -R | wc -l &
The ampersand (&) at the end of command tells shells start process (ls / -R | wc -l) and run it in
background takes next command immediately.

Process & PID defined as:
"An instance of running command is called process and the number printed by shell is called process-id
(PID), this PID can be use to refer specific running process."

Prev Home Next
What is Processes Up Linux Command(s) Related with Process

LSST v1.05r3 > Chapter 2 > Why Process required

http://www.cyberciti.biz/pdf/lsst/ch02sec19.html [7/29/2002 6:52:12 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 2: Getting started with Shell Programming Next

Linux Command Related with Process
Following tables most commonly used command(s) with process:

For this purpose Use this Command Examples*
To see currently running process ps $ ps
To stop any process by PID i.e. to
kill process

kill {PID} $ kill 1012

To stop processes by name i.e. to kill
process

killall {Process-name} $ killall httpd

To get information about all running
process

ps -ag $ ps -ag

To stop all process except your shell kill 0 $ kill 0
For background processing (With &,
use to put particular command and
program in background)

linux-command & $ ls / -R | wc -l &

To display the owner of the
processes along with the processes

ps aux $ ps aux

To see if a particular process is
running or not. For this purpose you
have to use ps command in
combination with the grep command

ps ax | grep process-U-want-to see

For e.g. you want to see
whether Apache web server
process is running or not
then give command

$ ps ax | grep httpd

To see currently running processes
and other information like memory
and CPU usage with real time
updates.

top
See the output of top command.

$ top

Note that to exit from top
command press q.

To display a tree of processes pstree $ pstree

* To run some of this command you need to be root or equivalnt user.

NOTE that you can only kill process which are created by yourself. A Administrator can almost kill
95-98% process. But some process can not be killed, such as VDU Process.

Exercise:
You are working on your Linux workstation (might be learning LSST or some other work like sending
mails, typing letter), while doing this work you have started to play MP3 files on your workstation.
Regarding this situation, answer the following question:

LSST v1.05r3 > Chapter 3 > Linux Command Related with Process

http://www.cyberciti.biz/pdf/lsst/ch02sec20.html (1 of 2) [7/29/2002 6:52:14 PM]

1) Is it example of Multitasking?
2) How you will you find out the both running process (MP3 Playing & Letter typing)?
3) "Currently only two Process are running in your Linux/PC environment", Is it True or False?, And
how you will verify this?
4) You don't want to listen music (MP3 Files) but want to continue with other work on PC, you will take
any of the following action:

Turn off Speakers1.

Turn off Computer / Shutdown Linux Os2.

Kill the MP3 playing process3.

None of the above4.

Click here for answers.

Prev Home Next

Why Process required Up Shells (bash) structured Language
Constructs

LSST v1.05r3 > Chapter 3 > Linux Command Related with Process

http://www.cyberciti.biz/pdf/lsst/ch02sec20.html (2 of 2) [7/29/2002 6:52:14 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

Introduction
Making decision is important part in ONCE life as well as in computers logical driven program. In fact
logic is not LOGIC until you use decision making. This chapter introduces to the bash's structured
language constructs such as:

Decision making

Loops

Is there any difference making decision in Real life and with Computers? Well real life decision are quite
complicated to all of us and computers even don't have that much power to understand our real life
decisions. What computer know is 0 (zero) and 1 that is Yes or No. To make this idea clear, lets play
some game (WOW!) with bc - Linux calculator program.
$ bc
After this command bc is started and waiting for your commands, i.e. give it some calculation as follows
type 5 + 2 as:
5 + 2
7
7 is response of bc i.e. addition of 5 + 2 you can even try
5 - 2
5 / 2
See what happened if you type 5 > 2 as follows
5 > 2
1
1 (One?) is response of bc, How? bc compare 5 with 2 as, Is 5 is greater then 2, (If I ask same question to
you, your answer will be YES), bc gives this 'YES' answer by showing 1 value. Now try
5 < 2
0
0 (Zero) indicates the false i.e. Is 5 is less than 2?, Your answer will be no which is indicated by bc by
showing 0 (Zero). Remember in bc, relational expression always returns true (1) or false (0 - zero).

Try following in bc to clear your Idea and not down bc's response
5 > 12
5 == 10
5 != 2
5 == 5
12 < 2

Expression Meaning to us Your Answer BC's Response
5 > 12 Is 5 greater than 12 NO 0
5 == 10 Is 5 is equal to 10 NO 0
5 != 2 Is 5 is NOT equal to 2 YES 1

LSST v1.05r3 > Chapter 3 > Introducation

http://www.cyberciti.biz/pdf/lsst/ch03.html (1 of 2) [7/29/2002 6:52:15 PM]

5 == 5 Is 5 is equal to 5 YES 1
1 < 2 Is 1 is less than 2 Yes 1

It means when ever there is any type of comparison in Linux Shell It gives only two answer one is YES
and NO is other.

In Linux Shell Value Meaning Example

Zero Value (0) Yes/True 0

NON-ZERO Value No/False
-1, 32, 55 anything but
not zero

Remember both bc and Linux Shell uses different ways to show True/False values

Value Shown in bc as Shown in Linux Shell as

True/Yes 1 0

False/No 0 Non - zero value

Prev Home Next
Linux Command(s) Related with Process Up if condition

LSST v1.05r3 > Chapter 3 > Introducation

http://www.cyberciti.biz/pdf/lsst/ch03.html (2 of 2) [7/29/2002 6:52:15 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

if condition
if condition which is used for decision making in shell script, If given condition is true then command1 is
executed.
Syntax:

Condition is defined as:
"Condition is nothing but comparison between two values."

For compression you can use test or [expr] statements or even exist status can be also used.

Expreession is defined as:
"An expression is nothing but combination of values, relational operator (such as >,<, <> etc) and
mathematical operators (such as +, -, / etc)."

Following are all examples of expression:
5 > 2
3 + 6
3 * 65
a < b
c > 5
c > 5 + 30 -1

Type following commands (assumes you have file called foo)
$ cat foo
$ echo $?
The cat command return zero(0) i.e. exit status, on successful, this can be used, in if condition as follows,
Write shell script as

LSST v1.05r3 > Chapter 3 > if condition

http://www.cyberciti.biz/pdf/lsst/ch03sec01.html (1 of 3) [7/29/2002 6:52:16 PM]

Run above script as:
$ chmod 755 showfile
$./showfile foo
Shell script name is showfile ($0) and foo is argument (which is $1).Then shell compare it as follows:
if cat $1 which is expanded to if cat foo.

Detailed explanation
if cat command finds foo file and if its successfully shown on screen, it means our cat command is
successful and its exist status is 0 (indicates success), So our if condition is also true and hence statement
echo -e "\n\nFile $1, found and successfully echoed" is proceed by shell. Now if cat command is not
successful then it returns non-zero value (indicates some sort of failure) and this statement echo -e
"\n\nFile $1, found and successfully echoed" is skipped by our shell.

Exercise
Write shell script as follows:

Press Ctrl + d to save
$ chmod 755 trmif

Answer the following question in referance to above script:
(A) foo file exists on your disk and you give command, $./trmfi foo what will be output?
(B) If bar file not present on your disk and you give command, $./trmfi bar what will be output?
(C) And if you type $./trmfi What will be output?

For Answer click here.

Prev Home Next

LSST v1.05r3 > Chapter 3 > if condition

http://www.cyberciti.biz/pdf/lsst/ch03sec01.html (2 of 3) [7/29/2002 6:52:16 PM]

Shells (bash) structured Language
Constructs

Up test command or [expr]

LSST v1.05r3 > Chapter 3 > if condition

http://www.cyberciti.biz/pdf/lsst/ch03sec01.html (3 of 3) [7/29/2002 6:52:16 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

test command or [expr]
test command or [expr] is used to see if an expression is true, and if it is true it return zero(0), otherwise
returns nonzero for false.
Syntax:
test expression OR [expression]

Example:
Following script determine whether given argument number is positive.

Run it as follows
$ chmod 755 ispostive

$ ispostive 5
5 number is positive

$ispostive -45
Nothing is printed

$ispostive
./ispostive: test: -gt: unary operator expected

Detailed explanation
The line, if test $1 -gt 0 , test to see if first command line argument($1) is greater than 0. If it is true(0)
then test will return 0 and output will printed as 5 number is positive but for -45 argument there is no
output because our condition is not true(0) (no -45 is not greater than 0) hence echo statement is skipped.
And for last statement we have not supplied any argument hence error ./ispostive: test: -gt: unary
operator expected, is generated by shell , to avoid such error we can test whether command line argument
is supplied or not.

test or [expr] works with
1.Integer (Number without decimal point)
2.File types
3.Character strings

LSST v1.05r3 > Chapter 3 > test command or [expr]

http://www.cyberciti.biz/pdf/lsst/ch03sec02.html (1 of 3) [7/29/2002 6:52:17 PM]

For Mathematics, use following operator in Shell Script

Mathematical
Operator in Shell

Script
Meaning

Normal Arithmetical/
Mathematical

Statements
But in Shell

For test
statement with

if command

For [expr]
statement with

if command
-eq is equal to 5 == 6 if test 5 -eq 6 if [5 -eq 6]
-ne is not equal to 5 != 6 if test 5 -ne 6 if [5 -ne 6]
-lt is less than 5 < 6 if test 5 -lt 6 if [5 -lt 6]

-le
is less than or
equal to

5 <= 6 if test 5 -le 6 if [5 -le 6]

-gt is greater than 5 > 6 if test 5 -gt 6 if [5 -gt 6]

-ge
is greater than
or equal to

5 >= 6 if test 5 -ge 6 if [5 -ge 6]

NOTE: == is equal, != is not equal.

For string Comparisons use

Operator Meaning
string1 = string2 string1 is equal to string2
string1 != string2 string1 is NOT equal to string2
string1 string1 is NOT NULL or not defined
-n string1 string1 is NOT NULL and does exist
-z string1 string1 is NULL and does exist

Shell also test for file and directory types

Test Meaning
-s file Non empty file
-f file Is File exist or normal file and not a directory
-d dir Is Directory exist and not a file
-w file Is writeable file
-r file Is read-only file
-x file Is file is executable

Logical Operators

Logical operators are used to combine two or more condition at a time

Operator Meaning
! expression Logical NOT
expression1 -a expression2 Logical AND

LSST v1.05r3 > Chapter 3 > test command or [expr]

http://www.cyberciti.biz/pdf/lsst/ch03sec02.html (2 of 3) [7/29/2002 6:52:17 PM]

expression1 -o expression2 Logical OR

Prev Home Next
Decision making in shell script (i.e. if
command)

Up if...else...fi

LSST v1.05r3 > Chapter 3 > test command or [expr]

http://www.cyberciti.biz/pdf/lsst/ch03sec02.html (3 of 3) [7/29/2002 6:52:17 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

if...else...fi
If given condition is true then command1 is executed otherwise command2 is executed.
Syntax:

For e.g. Write Script as follows:

Try it as follows:
$ chmod 755 isnump_n

$ isnump_n 5
5 number is positive

$ isnump_n -45

LSST v1.05r3 > Chapter 3 > if...else...fi

http://www.cyberciti.biz/pdf/lsst/ch03sec03.html (1 of 4) [7/29/2002 6:52:18 PM]

-45 number is negative

$ isnump_n
./ispos_n : You must give/supply one integers

$ isnump_n 0
0 number is negative

Detailed explanation
First script checks whether command line argument is given or not, if not given then it print error
message as "./ispos_n : You must give/supply one integers". if statement checks whether number of
argument ($#) passed to script is not equal (-eq) to 0, if we passed any argument to script then this if
statement is false and if no command line argument is given then this if statement is true. The echo
command i.e.
echo "$0 : You must give/supply one integers"
 | |
 | |
 1 2
1 will print Name of script
2 will print this error message
And finally statement exit 1 causes normal program termination with exit status 1 (nonzero means script
is not successfully run).

The last sample run $ isnump_n 0 , gives output as "0 number is negative", because given argument is
not > 0, hence condition is false and it's taken as negative number. To avoid this replace second if
statement with if test $1 -ge 0.

Nested if-else-fi
You can write the entire if-else construct within either the body of the if statement of the body of an else
statement. This is called the nesting of ifs.

LSST v1.05r3 > Chapter 3 > if...else...fi

http://www.cyberciti.biz/pdf/lsst/ch03sec03.html (2 of 4) [7/29/2002 6:52:18 PM]

Run the above shell script as follows:
$ chmod +x nestedif.sh
$./nestedif.sh
1. Unix (Sun Os)
2. Linux (Red Hat)
Select you os choice [1 or 2]? 1
You Pick up Unix (Sun Os)

$./nestedif.sh
1. Unix (Sun Os)
2. Linux (Red Hat)
Select you os choice [1 or 2]? 2
You Pick up Linux (Red Hat)

$./nestedif.sh
1. Unix (Sun Os)
2. Linux (Red Hat)
Select you os choice [1 or 2]? 3
What you don't like Unix/Linux OS.

Note that Second if-else constuct is nested in the first else statement. If the condition in the first if
statement is false the the condition in the second if statement is checked. If it is false as well the final else
statement is executed.

You can use the nested ifs as follows also:
Syntax:

LSST v1.05r3 > Chapter 3 > if...else...fi

http://www.cyberciti.biz/pdf/lsst/ch03sec03.html (3 of 4) [7/29/2002 6:52:18 PM]

Prev Home Next
test command or [expr] Up Multilevel if-then-else

LSST v1.05r3 > Chapter 3 > if...else...fi

http://www.cyberciti.biz/pdf/lsst/ch03sec03.html (4 of 4) [7/29/2002 6:52:18 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

Multilevel if-then-else
Syntax:

For multilevel if-then-else statement try the following script:

Try above script as follows:
$ chmod 755 elf
$./elf 1
$./elf -2
$./elf 0
$./elf a
Here o/p for last sample run:
./elf: [: -gt: unary operator expected
./elf: [: -lt: unary operator expected
./elf: [: -eq: unary operator expected
Opps! a is not number, give number

LSST v1.05r3 > Chapter 3 > Multilevel if-then-else

http://www.cyberciti.biz/pdf/lsst/ch03sec04.html (1 of 2) [7/29/2002 6:52:19 PM]

Above program gives error for last run, here integer comparison is expected therefore error like "./elf: [: -gt: unary operator
expected" occurs, but still our program notify this error to user by providing message "Opps! a is not number, give number".

Prev Home Next
if...else...fi Up Loops in Shell Scripts

LSST v1.05r3 > Chapter 3 > Multilevel if-then-else

http://www.cyberciti.biz/pdf/lsst/ch03sec04.html (2 of 2) [7/29/2002 6:52:19 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

Loops in Shell Scripts
Loop defined as:
"Computer can repeat particular instruction again and again, until particular condition satisfies. A
group of instruction that is executed repeatedly is called a loop."

Bash supports:

for loop

while loop

Note that in each and every loop,

(a) First, the variable used in loop condition must be initialized, then execution of the loop begins.

(b) A test (condition) is made at the beginning of each iteration.

(c) The body of loop ends with a statement that modifies the value of the test (condition) variable.

Prev Home Next
Multilevel if-then-else Up for loop

LSST v1.05r3 > Chapter 3 > Loops in Shell Scripts

http://www.cyberciti.biz/pdf/lsst/ch03sec05.html [7/29/2002 6:52:23 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

for Loop
Syntax:

Before try to understand above syntax try the following script:

Run it above script as follows:
$ chmod +x testfor
$./testfor
The for loop first creates i variable and assigned a number to i from the list of number from 1 to 5, The shell execute
echo statement for each assignment of i. (This is usually know as iteration) This process will continue until all the items
in the list were not finished, because of this it will repeat 5 echo statements. To make you idea more clear try following
script:

Save above script and run it as:
$ chmod 755 mtable
$./mtable 7
$./mtable
For first run, above script print multiplication table of given number where i = 1,2 ... 10 is multiply by given n (here

LSST v1.05r3 > Chapter 3 > for Loop

http://www.cyberciti.biz/pdf/lsst/ch03sec06.html (1 of 5) [7/29/2002 6:52:26 PM]

command line argument 7) in order to produce multiplication table as
7 * 1 = 7
7 * 2 = 14
...
..
7 * 10 = 70
And for second test run, it will print message -
Error - Number missing form command line argument
Syntax : ./mtable number
Use to print multiplication table for given number

This happened because we have not supplied given number for which we want multiplication table, Hence script is
showing Error message, Syntax and usage of our script. This is good idea if our program takes some argument, let the
user know what is use of the script and how to used the script.
Note that to terminate our script we used 'exit 1' command which takes 1 as argument (1 indicates error and therefore
script is terminated)

Even you can use following syntax:

Syntax:

In above syntax BEFORE the first iteration, expr1 is evaluated. This is usually used to initialize variables for the loop.
All the statements between do and done is executed repeatedly UNTIL the value of expr2 is TRUE.
AFTER each iteration of the loop, expr3 is evaluated. This is usually use to increment a loop counter.

$ cat > for2
for ((i = 0 ; i <= 5; i++))
do
 echo "Welcome $i times"
done

Run the above script as follows:
$ chmod +x for2
$./for2
Welcome 0 times
Welcome 1 times
Welcome 2 times
Welcome 3 times
Welcome 4 times
Welcome 5 times

In above example, first expression (i = 0), is used to set the value variable i to zero.
Second expression is condition i.e. all statements between do and done executed as long as expression 2 (i.e continue as
long as the value of variable i is less than or equel to 5) is TRUE.
Last expression i++ increments the value of i by 1 i.e. it's equivalent to i = i + 1 statement.

LSST v1.05r3 > Chapter 3 > for Loop

http://www.cyberciti.biz/pdf/lsst/ch03sec06.html (2 of 5) [7/29/2002 6:52:26 PM]

Nesting of for Loop
As you see the if statement can nested, similarly loop statement can be nested. You can nest the for loop. To understand
the nesting of for loop see the following shell script.

Run the above script as follows:
$ chmod +x nestedfor.sh
$./nestefor.sh
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

Here, for each value of i the inner loop is cycled through 5 times, with the varible j taking values from 1 to 5. The inner
for loop terminates when the value of j exceeds 5, and the outer loop terminets when the value of i exceeds 5.

Following script is quite intresting, it prints the chess board on screen.

Run the above script as follows:
$ chmod +x chessboard
$./chessboard

LSST v1.05r3 > Chapter 3 > for Loop

http://www.cyberciti.biz/pdf/lsst/ch03sec06.html (3 of 5) [7/29/2002 6:52:26 PM]

On my terminal above script produec the output as follows:

Above shell script cab be explained as follows:

Command(s)/Statements Explanation
for ((i = 1; i <= 9; i++))
do

Begin the outer loop which runs 9 times., and the outer
loop terminets when the value of i exceeds 9

for ((j = 1 ; j <= 9; j++))
do

Begins the inner loop, for each value of i the inner loop is
cycled through 9 times, with the varible j taking values
from 1 to 9. The inner for loop terminates when the value
of j exceeds 9.

tot=`expr $i + $j`
tmp=`expr $tot % 2`

See for even and odd number positions using these
statements.

if [$tmp -eq 0]; then
 echo -e -n "\033[47m "
else
 echo -e -n "\033[40m "
fi

If even number posiotion print the white colour block
(using echo -e -n "\033[47m " statement); otherwise for
odd postion print the black colour box (using echo -e -n
"\033[40m " statement). This statements are responsible to
print entier chess board on screen with alternet colours.

done End of inner loop

echo -e -n "\033[40m"
Make sure its black background as we always have on our
terminals.

echo "" Print the blank line

done
End of outer loop and shell scripts get terminted by printing
the chess board.

Exercise
Try to understand the shell scripts (for loops) shown in exercise chapter.

LSST v1.05r3 > Chapter 3 > for Loop

http://www.cyberciti.biz/pdf/lsst/ch03sec06.html (4 of 5) [7/29/2002 6:52:26 PM]

Prev Home Next
Loops in Shell Scripts Up while loop

LSST v1.05r3 > Chapter 3 > for Loop

http://www.cyberciti.biz/pdf/lsst/ch03sec06.html (5 of 5) [7/29/2002 6:52:26 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

while loop
Syntax:

Loop is executed as long as given condition is true. For e.g.. Above for loop program (shown in last
section of for loop) can be written using while loop as:

Save it and try as
$ chmod 755 nt1
$./nt1 7
Above loop can be explained as follows:

LSST v1.05r3 > Chapter 3 > The case Statement

http://www.cyberciti.biz/pdf/lsst/ch03sec07.html (1 of 2) [7/29/2002 6:52:28 PM]

n=$1
Set the value of command line argument to
variable n. (Here it's set to 7)

i=1 Set variable i to 1

while [$i -le 10]
This is our loop condition, here if value of i is less
than 10 then, shell execute all statements between
do and done

do Start loop

echo "$n * $i = `expr $i * $n`"

Print multiplication table as
7 * 1 = 7
7 * 2 = 14
....
7 * 10 = 70, Here each time value of variable n is
multiply be i.

i=`expr $i + 1`

Increment i by 1 and store result to i. (i.e. i=i+1)
Caution: If you ignore (remove) this statement
than our loop become infinite loop because value
of variable i always remain less than 10 and
program will only output
7 * 1 = 7
...
...
E (infinite times)

done
Loop stops here if i is not less than 10 i.e.
condition of loop is not true. Hence
loop is terminated.

Prev Home Next
for loop Up The case Statement

LSST v1.05r3 > Chapter 3 > The case Statement

http://www.cyberciti.biz/pdf/lsst/ch03sec07.html (2 of 2) [7/29/2002 6:52:28 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

The case Statement
The case statement is good alternative to Multilevel if-then-else-fi statement. It enable you to match
several values against one variable. Its easier to read and write.
Syntax:

The $variable-name is compared against the patterns until a match is found. The shell then executes all
the statements up to the two semicolons that are next to each other. The default is *) and its executed if
no match is found. For e.g. write script as follows:

LSST v1.05r3 > Chapter 3 > The case Statement

http://www.cyberciti.biz/pdf/lsst/ch03sec08.html (1 of 2) [7/29/2002 6:52:32 PM]

Save it by pressing CTRL+D and run it as follows:
$ chmod +x car
$ car van
$ car car
$ car Maruti-800

First script will check, that if $1(first command line argument) is given or not, if NOT given set value of
rental variable to "*** Unknown vehicle ***",if command line arg is supplied/given set value of rental
variable to given value (command line arg). The $rental is compared against the patterns until a match is
found.
For first test run its match with van and it will show output "For van Rs.10 per k/m."
For second test run it print, "For car Rs.20 per k/m".
And for last run, there is no match for Maruti-800, hence default i.e. *) is executed and it prints, "Sorry, I
can not gat a Maruti-800 for you".
Note that esac is always required to indicate end of case statement.

See the one more example of case statement in chapter 4 of section shift command.

Prev Home Next
while loop Up How to de-bug the shell script?

LSST v1.05r3 > Chapter 3 > The case Statement

http://www.cyberciti.biz/pdf/lsst/ch03sec08.html (2 of 2) [7/29/2002 6:52:32 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 3: Shells (bash) structured Language Constructs Next

How to de-bug the shell script?
While programming shell sometimes you need to find the errors (bugs) in shell script and correct the
errors (remove errors - debug). For this purpose you can use -v and -x option with sh or bash command
to debug the shell script. General syntax is as follows:
Syntax:
sh option { shell-script-name }
OR
bash option { shell-script-name }
Option can be
-v Print shell input lines as they are read.
-x After expanding each simple-command, bash displays the expanded value of PS4 system variable,
followed by the command and its expanded arguments.

Example:

$ cat > dsh1.sh
#
Script to show debug of shell
#
tot=`expr $1 + $2`
echo $tot

Press ctrl + d to save, and run it as
$ chmod 755 dsh1.sh
$./dsh1.sh 4 5
9
$ sh -x dsh1.sh 4 5
#
Script to show debug of shell
#
tot=`expr $1 + $2`
expr $1 + $2
++ expr 4 + 5
+ tot=9
echo $tot
+ echo 9
9

See the above output, -x shows the exact values of variables (or statements are shown on screen with
values).

LSST v1.05r3 > Chapter 3 > How to de-bug the shell script?

http://www.cyberciti.biz/pdf/lsst/ch03sec09.html (1 of 2) [7/29/2002 6:52:33 PM]

$ sh -v dsh1.sh 4 5

Use -v option to debug complex shell script.

Prev Home Next
The case Statement Up Advanced Shell Scripting

LSST v1.05r3 > Chapter 3 > How to de-bug the shell script?

http://www.cyberciti.biz/pdf/lsst/ch03sec09.html (2 of 2) [7/29/2002 6:52:33 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Introduction
Linux contains powerful utility programs. You can use these utility to

Locate system information

For better file management

To organize your data

System administration etc

Following section introduce you to some of the essential utilities as well as expression. While
programming shell you need to use these essential utilities. Some of these utilities (especially sed & awk)
requires understanding of expression. After the quick introduction to utilities, you will learn the
expression.

Prev Home Next

getopts command Up Preparing for Quick Tour of essential
utilities

LSST v1.05r3 > Chapter 5 > Introduction

http://www.cyberciti.biz/pdf/lsst/ch05.html [7/29/2002 6:53:07 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Prepering for Quick Tour of essential
utilities
For this part of tutorial create sname and smark data files as follows (Using text editor of your choice)
Note Each data block is separated from the other by TAB character i.e. while creating the file if you type
11 then press "tab" key, and then write Vivek (as shown in following files):

sname

Sr.No Name
11 Vivek
12 Renuka
13 Prakash
14 Ashish
15 Rani

smark

Sr.No Mark
11 67
12 55
13 96
14 36
15 67

Prev Home Next
Essential Utilities for Power User Up Selecting portion of a file using cut utility

LSST v1.05r3 > Chapter 5 > Prepering for Quick Tour of essential utilities

http://www.cyberciti.biz/pdf/lsst/ch05sec01.html [7/29/2002 6:53:08 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Selecting portion of a file using cut utility
Suppose from sname file you wish to print name of student on-screen, then from shell (Your command
prompt i.e. $) issue command as follows:
$cut -f2 sname
Vivek
Renuka
Prakash
Ashish
Rani

cut utility cuts out selected data from sname file. To select Sr.no. field from sname give command as
follows:
$cut -f1 sname
11
12
13
14
15

Command Explanation
cut Name of cut utility

-f1
Using (-f) option, you are specifying the extraction field number. (In this example
its 1 i.e. first field)

sname File which is used by cut utility and which is use as input for cut utility.

You can redirect output of cut utility as follows
$cut -f2 sname > /tmp/sn.tmp.$$
$cut -f2 smark > /tmp/sm.tmp.$$
$cat /tmp/sn.tmp.$$
Vivek
Renuka
Prakash
Ashish
Rani
$cat /tmp/sm.tmp.$$
67
55
96
36
67

LSST v1.05r3 > Chapter 5 > Selecting portion of a file using cut utility

http://www.cyberciti.biz/pdf/lsst/ch05sec02.html (1 of 2) [7/29/2002 6:53:11 PM]

General Syntax of cut utility:
Syntax:
cut -f{field number} {file-name}

Use of Cut utility:
Selecting portion of a file.

Prev Home Next
Preparing for Quick Tour of essential
utilities

Up Putting lines together using paste utility

LSST v1.05r3 > Chapter 5 > Selecting portion of a file using cut utility

http://www.cyberciti.biz/pdf/lsst/ch05sec02.html (2 of 2) [7/29/2002 6:53:11 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Putting lines together using paste utility
Now enter following command at shell prompt
$ paste sname smark
11 Vivek 11 67
12 Renuka 12 55
13 Prakash 13 96
14 Ashish 14 36
15 Rani 15 67

Paste utility join textual information together. To clear your idea try following command at shell prompt:

$ paste /tmp/sn.tmp.$$ /tmp/sm.tmp.$$
Vivek 67
Renuka 55
Prakash 96
Ashish 36
Rani 67

Paste utility is useful to put textual information together located in various files.

General Syntax of paste utility:
Syntax:
paste {file1} {file2}

Use of paste utility:
Putting lines together.

Can you note down basic difference between cut and paste utility?

Prev Home Next
Selecting portion of a file using cut utility Up The join utility

LSST v1.05r3 > Chapter 5 > Putting lines together using paste utility

http://www.cyberciti.biz/pdf/lsst/ch05sec03.html [7/29/2002 6:53:12 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

The join utility
Now enter following command at shell prompt:
$join sname smark
11 Vivek 67
12 Renuka 55
13 Prakash 96
14 Ashish 36
15 Rani 67

Here students names are matched with their appropriate marks. How ? join utility uses the Sr.No. field to
join to files. Notice that Sr.No. is the first field in both sname and smark file.

General Syntax of join utility:
Syntax:
join {file1} {file2}

Use of join utility:
The join utility joins, lines from separate files.

Note that join will only work, if there is common field in both file and if values are identical to each
other.

Prev Home Next

Putting lines together using paste utility Up Translating range of characters using tr
utility

LSST v1.05r3 > Chapter 5 > The join utility

http://www.cyberciti.biz/pdf/lsst/ch05sec04.html [7/29/2002 6:53:14 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Translateing range of characters using tr
utility
Type the following command at shell prompt:
$ tr "h2" "3x" < sname
11 Vivek
1x Renuka
13 Prakas3
14 As3is3
15 Rani

You can clearly see that each occurrence of character 'h' is replace with '3' and '2' with 'x'. tr utility
translate specific characters into other specific characters or range of characters into other ranges.
h -> 3
2 -> x

Consider following example: (after executing command type text in lower case)
$ tr "[a-z]" "[A-Z]"
hi i am Vivek
HI I AM VIVEK
what a magic
WHAT A MAGIC

{Press CTRL + C to terminate.}

Here tr translate range of characters (i.e. small a to z) into other (i.e. to Capital A to Z) ranges.

General Syntax & use of tr utility:
Syntax:
tr {pattern-1} {pattern-2}

Use of tr utility:
To translate range of characters into other range of characters.

After typing following paragraph, I came to know my mistake that entire paragraph must be in lowercase
characters, how to correct this mistake? (Hint - Use tr utility)

$ cat > lcommunity.txt
THIS IS SAMPLE PARAGRAPH
WRITTEN FOR LINUX COMMUNITY,
BY VIVEK G GITE (WHO ELSE?)
OKAY THAT IS OLD STORY.

LSST v1.05r3 > Chapter 5 > Translateing range of characters using tr utility

http://www.cyberciti.biz/pdf/lsst/ch05sec05.html (1 of 2) [7/29/2002 6:53:15 PM]

Prev Home Next
The join utility Up Data manipulation using awk utility

LSST v1.05r3 > Chapter 5 > Translateing range of characters using tr utility

http://www.cyberciti.biz/pdf/lsst/ch05sec05.html (2 of 2) [7/29/2002 6:53:15 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Data manipulation using awk utility
Before learning more about awk create data file using any text editor or simply vi:

inventory

egg order 4
cacke good 10
cheese okay 4
pen good 12
floppy good 5

After crating file issue command
$ awk '/good/ { print $3 }' inventory
10
12
5

awk utility, select each record from file containing the word "good" and performs the action of printing
the third field (Quantity of available goods.). Now try the following and note down its output.
$ awk '/good/ { print $1 " " $3 }' inventory

General Syntax of awk utility:
Syntax:
awk 'pattern action' {file-name}

For $ awk '/good/ { print $3 }' inventory example,

/good/ Is the pattern used for selecting lines from file.
{print
$3}

This is the action; if pattern found, print on of such action. Here $3 means third record in
selected record. (What $1 and $2 mean?)

inventory File which is used by awk utility which is use as input for awk utility.

Use of awk utility:
To manipulate data.

Prev Home Next
Translating range of characters using tr
utility

Up sed utility - Editing file without using
editor

LSST v1.05r3 > Chapter 5 > Data manipulation using awk utility

http://www.cyberciti.biz/pdf/lsst/ch05sec06.html [7/29/2002 6:53:17 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

sed utility - Editing file without using
editor
For this part of tutorial create data file as follows

teaormilk

India's milk is good.
tea Red-Lable is good.
tea is better than the coffee.

After creating file give command
$ sed '/tea/s//milk/g' teaormilk > /tmp/result.tmp.$$
$ cat /tmp/result.tmp.$$
India's milk is good.
milk Red-Lable is good.
milk is better than the coffee.

sed utility is used to find every occurrence of tea and replace it with word milk. sed - Steam line editor
which uses 'ex' editors command for editing text files without starting ex. (Cool!, isn't it? no use of text
editor to edit anything!!!)

/tea/
Find tea word or select all lines having the
word tea

s//milk/
Replace (substitute) the word milk for the
tea.

g Make the changes globally.

Syntax:
sed {expression} {file}

Use of sed utility: sed is used to edit (text transformation) on given stream i.e a file or may be input from
a pipeline.

Prev Home Next

Data manipulation using awk utility Up Removing duplicate lines using uniq
utility

LSST v1.05r3 > Chapter 5 > sed utility - Editing file without using editor

http://www.cyberciti.biz/pdf/lsst/ch05sec07.html [7/29/2002 6:53:18 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Removing duplicate lines using uniq
utility
Create text file personame as follows:

personame

Hello I am vivek
12333
12333
welcome
to
sai computer academy, a'bad.
what still I remeber that name.
oaky! how are u luser?
what still I remeber that name.

After creating file, issue following command at shell prompt
$ uniq personame
Hello I am vivek
12333
welcome
to
sai computer academy, a'bad.
what still I remeber that name.
oaky! how are u luser?
what still I remeber that name.

Above command prints those lines which are unique. For e.g. our original file contains 12333 twice, so
additional copies of 12333 are deleted. But if you examine output of uniq, you will notice that 12333 is
gone (Duplicate), and "what still I remeber that name" remains as its. Because the uniq utility compare
only adjacent lines, duplicate lines must be next to each other in the file. To solve this problem you can
use command as follows
$ sort personame | uniq

General Syntax of uniq utility:
Syntax:
uniq {file-name}

LSST v1.05r3 > Chapter 5 > Removing duplicate lines using uniq utility

http://www.cyberciti.biz/pdf/lsst/ch05sec08.html (1 of 2) [7/29/2002 6:53:19 PM]

Prev Home Next
sed utility - Editing file without using
editor

Up Finding matching pattern using grep
utility

LSST v1.05r3 > Chapter 5 > Removing duplicate lines using uniq utility

http://www.cyberciti.biz/pdf/lsst/ch05sec08.html (2 of 2) [7/29/2002 6:53:19 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 5: Essential Utilities for Power User Next

Finding matching pattern using grep
utility
Create text file as follows:

demo-file

hello world!
cartoons are good
especially toon like tom (cat)
what
the number one song
12221
they love us
I too

After saving file, issue following command,
$ grep "too" demofile
cartoons are good
especially toon like tom (cat)
I too

grep will locate all lines for the "too" pattern and print all (matched) such line on-screen. grep prints too,
as well as cartoons and toon; because grep treat "too" as expression. Expression by grep is read as the
letter t followed by o and so on. So if this expression is found any where on line its printed. grep don't
understand words.

Syntax:
grep "word-to-find" {file-name}

Prev Home Next
Removing duplicate lines from text
database file using uniq utility

Up Learning expressions with ex

LSST v1.05r3 > Chapter 5 > Finding matching pattern using grep utility

http://www.cyberciti.biz/pdf/lsst/ch05sec09.html [7/29/2002 6:53:20 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Introduction
In the chpater 5, "Quick Tour of essential utilities", you have seen basic utilities. If you use them with
other tools, these utilities are very useful for data processing or for other works. In rest part of tutorial we
will learn more about patterns, filters, expressions, and off course sed and awk in depth.

Learning expressions with ex

What does "cat" mean to you ?

One its the word cat, (second cat is an animal! I know 'tom' cat), If same question is asked to computer
(not computer but to grep utility) then grep will try to find all occurrence of "cat" word (remember grep
read word "cat" as the c letter followed by a and followed by t) including cat, copycat, catalog etc.

Pattern defined as:
"Set of characters (may be words or not) is called pattern."
For e.g. "dog", "celeron", "mouse", "ship" etc are all example of pattern. Pattern can be change from one
to another, for e.g. "ship" as "sheep".

Metacharacters defined as:
"If patterns are identified using special characters then such special characters are known as
metacharacters".

expressions defined as:
"Combination of pattern and metacharacters is known as expressions (regular expressions)."
Regular expressions are used by different Linux utilities like

grep

awk

sed

So you must know how to construct regular expression. In the next part of LSST you will learn how to
construct regular expression using ex editor.

For this part of chapter/tutorial create 'demofile' - text file using any text editor.

Prev Home Next
Finding matching pattern using grep utility Up Getting started with ex

LSST v1.05 > Chapter 6 > Introduction

http://www.cyberciti.biz/pdf/lsst/ch06.html [7/29/2002 6:53:23 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Getting started with ex
You can start the ex editor by typeing ex at shell prompt:
Syntax:
ex {file-name}

Example:
$ ex demofile

The : (colon) is ex prompt where you can type ex text editor command or regular expression. Its time to
open our demofile, use ex as follows:
$ ex demofile
"demofile" [noeol] 20L, 387C
Entering Ex mode. Type "visual" to go to Normal mode.
:

As you can see, you will get : prompt, here you can type ex command, type q and press ENTER key to
exit from ex as shown follows: (remember commands are case sensetive)
: q
vivek@ls vivek]$

After typing the q command you are exit to shell prompt.

Prev Home Next
Learning expressions with ex Up Printing text on-screen

LSST v1.05 > Chapter 6 > Getting started with ex

http://www.cyberciti.biz/pdf/lsst/ch06sec01.html [7/29/2002 6:53:24 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Printing text on-screen
First open the our demofile as follows:
$ ex demofile
"demofile" [noeol] 20L, 387C
Entering Ex mode. Type "visual" to go to Normal mode.

Now type 'p' in front of : as follow and press enter
:p
Okay! I will stop.
:

NOTE By default p command will print current line, in our case its the last line of above text file.

Printing lines using range

Now if you want to print 1st line to next 5 line (i.e. 1 to 5 lines) then give command
:1,5 p
Hello World.
This is vivek from Poona.

I love linux.
It is different from all other Os

NOTE Here 1,5 is the address. if single number is used (e.g. 5 p) it indicate line number and if two
numbers are separated by comma its range of line.

Printing particular line

To print 2nd line from our file give command
:2 p
This is vivek from Poona.

Printing entire file on-screen

Give command
:1,$ p
Hello World.
This is vivek from Poona.

I love linux.
It is different from all other Os

LSST v1.05 > Chapter 6 > Printing text on-screen

http://www.cyberciti.biz/pdf/lsst/ch06sec02.html (1 of 2) [7/29/2002 6:53:25 PM]

.....

...

.....

Okay! I will stop.

NOTE Here 1 is 1st line and $ is the special character of ex which mean last-line character. So 1,$ means
print from 1st line to last-line character (i.e. end of file). Here p stands print.

Printing line number with our text

Give command
:set number
:1,3 p

1 Hello World.
2 This is vivek from Poona.
3

NOTE This command prints number next to each line. If you don't want number you can turn off
numbers by issuing following command
:set nonumber
:1,3 p

Hello World.
This is vivek from Poona.

Prev Home Next
Getting started with ex Up Deleting lines

LSST v1.05 > Chapter 6 > Printing text on-screen

http://www.cyberciti.biz/pdf/lsst/ch06sec02.html (2 of 2) [7/29/2002 6:53:25 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Deleting lines
Give command
:1, d
I love linux.

NOTE
Here 1 is 1st line and d command indicates deletes (Which deletes the 1st line).

You can even delete range of line by giving command as
:1,5 d

Prev Home Next
Printing text on-screen Up Copying lines

LSST v1.05 > Chapter 6 > Deleting lines

http://www.cyberciti.biz/pdf/lsst/ch06sec03.html [7/29/2002 6:53:26 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Copying lines
Give command as follows
:1,4 co $
:1,$ p
I love linux.

It is different from all other Os
....
.....

. (DOT) is special command of linux.

Okay! I will stop.

I love linux.
It is different from all other Os

My brother Vikrant also loves linux.

NOTE Here 1,4 means copy 1 to 4 lines; co command stands for copy; $ is end of file. So it mean copy
first four line to end of file. You can delete this line as follows
:18,21 d
Okay! I will stop.
:1,$ p

I love linux.

It is different from all other Os

My brother Vikrant also loves linux.

He currently lerarns linux.

Linux is cooool.

Linux is now 10 years old.

Next year linux will be 11 year old.

Rani my sister never uses Linux

She only loves to play games and nothing else.

Do you know?

. (DOT) is special command of linux.

LSST v1.05 > Chapter 6 > Copying lines

http://www.cyberciti.biz/pdf/lsst/ch06sec04.html (1 of 2) [7/29/2002 6:53:28 PM]

Okay! I will stop.

Prev Home Next
Deleting lines Up Searching the words

LSST v1.05 > Chapter 6 > Copying lines

http://www.cyberciti.biz/pdf/lsst/ch06sec04.html (2 of 2) [7/29/2002 6:53:28 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Searching the words
(a) Give following command
:/linux/ p
I love linux.

Note In ex you can specify address (line) using number for various operation. This is useful if you know
the line number in advance, but if you don't know line number, then you can use contextual address to
print line on-screen. In above example /linux/ is contextual address which is constructed by surrounding
a regular expression with two slashes. And p is print command of ex.
Try following and note down difference (Hint - Watch p is missing)
:/Linux/

(b)Give following command
:g/linux/ p

I love linux.
My brother Vikrant also loves linux.

He currently lerarns linux.
Next year linux will be 11 year old.

. (DOT) is special command of linux.

In previous example (:/linux/ p) only one line is printed. If you want to print all occurrence of the word
"linux" then you have to use g, which mean global line address. This instruct ex to find all occurrence of
pattern. Try following
:1,$ /Linux/ p

Which give the same result. It means g stands for 1,$.

Saving the file in ex

Give command
:w
"demofile" 20L, 386C written

w command will save the file.

Quitting the ex

Give command
:q

LSST v1.05 > Chapter 6 > Searching the words

http://www.cyberciti.biz/pdf/lsst/ch06sec05.html (1 of 2) [7/29/2002 6:53:29 PM]

q command quits from ex and you are return to shell prompt.

Note use wq command to do save and exit from ex.

Prev Home Next

Coping lines Up Find and Replace (Substituting regular
expression)

LSST v1.05 > Chapter 6 > Searching the words

http://www.cyberciti.biz/pdf/lsst/ch06sec05.html (2 of 2) [7/29/2002 6:53:29 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Find and Replace (Substituting regular
expression)
Give command as follows
:8 p
He currently lerarns linux.
:8 s/lerarns/learn/
:p
He currently learn linux.

Note Using above command, you are substituting the word "learn" for the word "lerarns".

Above command can be explained as follows:

Command Explanation
8 Goto line 8, address of line.
s Substitute
/lerarns/ Target pattern

learn/
If target pattern found substitute the expression (i.e.
learn/)

Considered the following command:
:1,$ s/Linux/Unix/
Rani my sister never uses Unix
:1,$ p

Hello World.
This is vivek from Poona.
....
..
.....

. (DOT) is special command of linux.

Okay! I will stop.

Using above command, you are substituting all lines i.e. s command will find all of the address line for
the pattern "Linux" and if pattern "Linux" found substitute pattern "Unix".

Command Explanation
:1,$ Substitute for all line

s Substitute

LSST v1.05 > Chapter 6 > Find and Replace (Substituting regular expression)

http://www.cyberciti.biz/pdf/lsst/ch06sec06.html (1 of 3) [7/29/2002 6:53:31 PM]

/Linux/ Target pattern

Unix/
If target pattern found substitute the expression
(i.e. Unix/)

Even you can also use contextual address as follows
:/sister/ p
Rani my sister never uses Unix
:g /sister/ s/never/always/
:p
Rani my sister always uses Unix

Above command will first find the line containing pattern "sister" if found then it will substitute the
pattern "always" for the pattern "never" (It mean find the line containing the word sister, on that line find
the word never and replace it with word always.)
Try the following and watch the output very carefully.
:g /Unix/ s/Unix/Linux
3 substitutions on 3 lines

Above command finds all line containing the regular expression "Unix", then substitute "Linux" for all
occurrences of "Unix". Note that above command can be also written as follows
:g /Unix/ s//Linux

Here // is replace by the last pattern/regular expression i.e. Unix. Its shortcut. Now try the following
:g /Linux/ s//UNIX/
3 substitutions on 3 lines
:g/Linux/p
Linux is cooool.
Linux is now 10 years old.
Rani my sister always uses Linux

:g /Linux/ s//UNIX/
3 substitutions on 3 lines
:g/UNIX/p

UNIX is cooool.
UNIX is now 10 years old.
Rani my sister always uses UNIX

By default substitute command only substitute first occurrence of a pattern on a line. Let's take another
example, give command
:/brother/p
My brother Vikrant also loves linux who also loves unix.

Now in above line "also" word is occurred twice, give the following substitute command
:g/brother/ s/also/XYZ/
:/brother/p
My brother Vikrant XYZ loves linux who also loves unix.

LSST v1.05 > Chapter 6 > Find and Replace (Substituting regular expression)

http://www.cyberciti.biz/pdf/lsst/ch06sec06.html (2 of 3) [7/29/2002 6:53:31 PM]

Make sure next time it works
:g/brother/ s/XYZ/also/

Note that "also" is only once substituted. If you want to s command to work with all occurrences of
pattern within a address line give command as follows:
:g/brother/ s/also/XYZ/g
:p
My brother Vikrant XYZ loves linux who XYZ loves unix.

:g/brother/ s/XYZ/also/g
:p
My brother Vikrant also loves linux who also loves unix.

The g option at the end instruct s command to perform replacement on all occurrences of the target
pattern within a address line.

Prev Home Next

Searching the words Up Replacing word with confirmation from
user

LSST v1.05 > Chapter 6 > Find and Replace (Substituting regular expression)

http://www.cyberciti.biz/pdf/lsst/ch06sec06.html (3 of 3) [7/29/2002 6:53:31 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Replacing word with confirmation from
user
Give command as follows
:g/Linux/ s//UNIX/gc

After giving this command ex will ask you question like - replace with UNIX (y/n/a/q/^E/^Y)?
Type y to replace the word or n to not replace or a to replace all occurrence of word.

Prev Home Next
Find and Replace (Substituting regular
expression)

Up Finding words

LSST v1.05 > Chapter 6 > Replacing word with confirmation from user

http://www.cyberciti.biz/pdf/lsst/ch06sec07.html [7/29/2002 6:53:32 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Finding words
Command like
:g/the/p
It is different from all other Os
My brother Vikrant also loves linux who also loves unix.

Will find word like theater, the, brother, other etc. What if you want to just find the word like "the" ? To
find the word (Let's say Linux) you can give command like
:/\<Linux\>
Linux is cooool.
:g/\<Linux\>/p
Linux is cooool.
Linux is now 10 years old.
Rani my sister never uses Linux

The symbol \< and \> respectively match the empty string at the beginning and end of the word. To find
the line which contain Linux pattern at the beginning give command
:/^Linux
Linux is cooool.

As you know $ is end of line character, the ^ (caret) match beginning of line. To find all occurrence of
pattern "Linux" at the beginning of line give command
:g/^Linux
Linux is cooool.
Linux is now 10 years old.

And if you want to find "Linux" at the end of line then give command
:/Linux $
Rani my sister never uses Linux

Following command will find empty line:
:/^$

To find all blank line give command:
:g/^$

To view entire file without blank line you can use command as follows:
:g/[^/^$]
Hello World.
This is vivek from Poona.
I love linux.
It is different from all other Os

LSST v1.05 > Chapter 6 > Finding words

http://www.cyberciti.biz/pdf/lsst/ch06sec08.html (1 of 3) [7/29/2002 6:53:33 PM]

My brother Vikrant also loves linux who also loves unix.
He currently learn linux.
Linux is cooool.
Linux is now 10 years old.
Next year linux will be 11 year old.
Rani my sister never uses Linux
She only loves to play games and nothing else.
Do you know?
. (DOT) is special command of linux.
Okay! I will stop.

Command Explanation
g All occurrence
/[^ [^] This means not

/^$
Empty line, Combination of ^
and $.

To delete all blank line you can give command as follows
:g/^$/d
Okay! I will stop.
:1,$ p
Hello World.
This is vivek from Poona.
I love linux.
It is different from all other Os
My brother Vikrant also loves linux who also loves unix.
He currently learn linux.
Linux is cooool.
Linux is now 10 years old.
Next year linux will be 11 year old.
Rani my sister never uses Linux
She only loves to play games and nothing else.
Do you know?
. (DOT) is special command of linux.
Okay! I will stop.

Try u command to undo, to undo what you have done it, give it as follows:
:u
:1,$ p
Hello World.
This is vivek from Poona.
....
...
....
Okay! I will stop.

LSST v1.05 > Chapter 6 > Finding words

http://www.cyberciti.biz/pdf/lsst/ch06sec08.html (2 of 3) [7/29/2002 6:53:33 PM]

Prev Home Next
Replacing word with confirmation from
user

Up Using range of characters in regular
expressions

LSST v1.05 > Chapter 6 > Finding words

http://www.cyberciti.biz/pdf/lsst/ch06sec08.html (3 of 3) [7/29/2002 6:53:33 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Using range of characters in regular
expressions
Try the following command
:g/Linux/p
Linux is cooool.
Linux is now 10 years old.
Rani my sister never uses Linux

This will find only "Linux" and not the "linux", to overcome this problem try as follows
:g/[Ll]inux/p
I love linux.
My brother Vikrant also loves linux who also loves unix.
He currently learn linux.
Linux is cooool.
Linux is now 10 years old.
Next year linux will be 11 year old.
Rani my sister never uses Linux
. (DOT) is special command of linux.

Here a list of characters enclosed by [and], which matches any single character in that range. if the first
character of list is ^, then it matches any character not in the list. In above example [Ll], will try to match
L or l with rest of pattern. Let's see another example. Suppose you want to match single digit character in
range you can give command as follows
:/[0123456789]

Even you can try it as follows
:g/[0-9]
Linux is now 10 years old.
Next year linux will be 11 year old.

Here range of digit is specified by giving first digit (0-zero) and last digit (1), separated by hyphen. You
can try [a-z] for lowercase character, [A-Z] for uppercase character. Not just this, there are certain named
classes of characters which are predefined. They are as follows:

Predefined
classes of

characters
Meaning

[:alnum:] Letters and Digits (A to Z or a to z or 0 to 9)
[:alpha:] Letters A to Z or a to z
[:cntrl:] Delete character or ordinary control character (0x7F or 0x00 to 0x1F)

LSST v1.05 > Chapter 6 > Using range of characters in regular expressions

http://www.cyberciti.biz/pdf/lsst/ch06sec09.html (1 of 3) [7/29/2002 6:53:35 PM]

[:digit:] Digit (0 to 9)
[:graph:] Printing character, like print, except that a space character is excluded
[:lower:] Lowercase letter (a to z)
[:print:] Printing character (0x20 to 0x7E)
[:punct:] Punctuation character (ctrl or space)

[:space:]
Space, tab, carriage return, new line, vertical tab, or form feed (0x09
to 0x0D, 0x20)

[:upper:] Uppercase letter (A to Z)
[:xdigit:] Hexadecimal digit (0 to 9, A to F, a to f)

For e.g. To find digit or alphabet (Upper as well as lower) you will write
:/[0-9A-Za-Z]

Instead of writing such command you could easily use predefined classes or range as follows
:/[[:alnum:]]

The . (dot) matches any single character.
For e.g. Type following command
:g/\<.o\>
She only loves to play games and nothing else.
Do you know?

This will include lo(ves), Do, no(thing) etc.

* Matches the zero or more times
For e.g. Type following command
:g/L*
Hello World.
This is vivek from Poona.
....
....

:g/Li*
Linux is cooool.
Linux is now 10 years old.
Rani my sister never uses Linux

:g/c.*and
. (DOT) is special command of linux.

Here first c character is matched, then any single character (.) followed by n number of single character
(1 or 100 times even) and finally ends with and. This can found different word as follows command or
catand etc.

In the regular expression metacharacters such as . (DOT) or * loose their special meaning if we use as \.
or *. The backslash removes the special meaning of such meatcharacters and you can use them as
ordinary characters. For e.g. If u want to search . (DOT) character at the beginning of line, then you can't

LSST v1.05 > Chapter 6 > Using range of characters in regular expressions

http://www.cyberciti.biz/pdf/lsst/ch06sec09.html (2 of 3) [7/29/2002 6:53:35 PM]

use command as follows
:g/^.
Hello World.
This is vivek from Poona.
....
..
...
. (DOT) is special command of linux.

Okay! I will stop.

Instead of that use
:g/^\.
. (DOT) is special command of linux.

Prev Home Next
Finding words Up Using & as Special replacement character

LSST v1.05 > Chapter 6 > Using range of characters in regular expressions

http://www.cyberciti.biz/pdf/lsst/ch06sec09.html (3 of 3) [7/29/2002 6:53:35 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Using & as Special replacement
character
Try the following command:
:1,$ s/Linux/&-Unix/p
3 substitutions on 3 lines
Rani my sister never uses Linux-Unix
:g/Linux-Unix/p
Linux-Unix is cooool.
Linux-Unix is now 10 years old.
Rani my sister never uses Linux-Unix

This command will replace, target pattern "Linux" with "Linux-Unix". & before - Unix means use "last
pattern found" with given pattern, So here last pattern found is "Linux" which is used with given -Unix
pattern (Finally constructing "Linux-Unix" substitute for "Linux").
Can you guess the output of this command?
:1,$ s/Linux-Unix/&Linux/p

Prev Home Next
Using range of characters in regular
expressions

Up Converting lowercase character to
uppercase

LSST v1.05 > Chapter 6 > Using & as Special replacement characte

http://www.cyberciti.biz/pdf/lsst/ch06sec10.html [7/29/2002 6:53:35 PM]

Linux Shell Scripting Tutorial (LSST) v1.05r3
Prev Chapter 6: Learning expressions with ex Next

Converting lowercase character to
uppercase
Try the following command
:1,$ s/[a-z]/\u &/g

Above command can be explained as follows:

Command Explanation
1,$ Line Address location is all i.e. find all lines for following pattern
s Substitute command
/[a-z]/ Find all lowercase letter - Target

\u&/
Substitute to Uppercase. \u& means substitute last patter (&) matched with its
UPPERCASE replacement (\u) Note: Use \l (small L) for lowercase character.

g Global replacement

Can you guess the output of following command?
:1,$ s/[A-Z]/\l&/g

Congratulation, for successfully completion of this tutorial of regular expressions.
I hope so you have learn lot from this. To master the expression you have to do lot of practice. This
tutorial is very important to continue with rest of tutorial and to become power user of Linux. Impress
your friends with such expressions. Can you guess what last expression do?
:1,$ s/^ *$//

Note : indicates two black space.

Prev Home Next
Using & as Special replacement character Up awk - Revisited

LSST v1.05 > Chapter 6 > Converting lowercase character to uppercase

http://www.cyberciti.biz/pdf/lsst/ch06sec11.html [7/29/2002 6:53:37 PM]

